Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Biochem ; 124(10): 1573-1586, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37642215

RESUMO

Antimicrobial resistance (AMR) poses a significant threat to global public health, with multidrug-resistant Pseudomonas aeruginosa being a leading cause of mortality, accounting for 18%-61% of deaths annually. The quorum sensing (QS) systems of P. aeruginosa, particularly the LasI-LasR system, play a crucial role in promoting biofilm formation and expression of virulent genes, which contribute to the development of AMR. This study focuses on LasI, the mediator of biofilm formation for identifying its inhibitors from a marine compound database comprising of 32 000 compounds using molecular docking and molecular simulation techniques. The virtual screening and docking experiments demonstrated that the top 10 compounds exhibited favorable docking scores of <-7.19 kcal/mol compared to the reported inhibitor 3,5,7-Trihydroxyflavone with a docking score of -3.098 kcal/mol. Additionally, molecular mechanics/Poisson-Boltzmann generalized born surface area (MM-GBSA) analyses were conducted to assess these compounds' suitability for further investigation. Out of 10 compounds, five compounds demonstrated high MM-GBSA binding energy (<-35.33 kcal/mol) and were taken up for molecular dynamics simulations to evaluate the stability of the protein-ligand complex over a 100 ns period. Based on root mean square deviation, root mean square fluctuation, radius of gyration, and hydrogen bond interactions analysis, three marine compounds, namely MC-2 (CMNPD13419) and MC-3 (CMNPD1068), exhibited consistent stability throughout the simulation. Therefore, these compounds show potential as promising LasI inhibitors and warrant further validation through in vitro and in vivo experiments. By exploring the inhibitory effects of these marine compounds on P. aeruginosa's QS system, this research aims to contribute to the development of novel strategies to combat AMR.

2.
J Biomol Struct Dyn ; : 1-12, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37646649

RESUMO

Emerging antimicrobial resistance has highlighted the need to design more effective antibiotics to treat deadly bacterial infections. Acinetobacter baumannii's outer membrane protein A (OmpA) is a critical virulence component involved in biofilm formation, immunomodulation, and antibiotic resistance, which characterizes it as a potential therapeutic target. The present study aimed to screen the natural product database (>1,00,000) to identify the potential inhibitor against OmpA. Molecular docking studies revealed that 10 compounds had good docking scores (≤ -7 kcal/mol) compared to the reported inhibitor epiestriol (-3.079). Further, these 10 compounds were subjected to ADME analysis and MMGBSA analysis. Based on MMGBSA results, we selected 5 compounds [NP-1 (MolPort-039-337-117), NP-5(MolPort-019-932-973), NP-6 (MolPort-005-948-336), NP-8(MolPort-042-673-978) and NP-9(MolPort-042-673-766)] with high binding affinity. Molecular dynamics simulation found that NP-5, NP-8, and NP-9 were stable after analysing their RMSD, RMSF, the radius of gyration, and hydrogen interactions of complexes. Our study revealed that NP-5, NP-8, and NP-9 bind perfectly with OmpA and can act as its potential inhibitors. The results of this study imply that the identified inhibitors have the potential for further investigation.Communicated by Ramaswamy H. Sarma.

3.
Biochimie ; 207: 75-82, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36473603

RESUMO

Leishmaniasis is a tropical parasitic disease caused by Leishmania spp. They cause several presentations of illness ranging from cutaneous leishmaniasis to visceral leishmaniasis. The current arsenal of drugs to treat leishmaniasis is limited, and drug resistance further impedes the problem. Therefore, it is necessary to revisit the available information to identify an alternative or new target for treatment. The glycoprotein 63 (gp63), is a potential anti-leishmanial target that plays a significant role in host-pathogen interaction and virulence. Many studies are ongoing to develop gp63 inhibitors or use it as a vaccine target. In this review, we will discuss the potential of gp63 as a drug target. This review summarises the studies focusing on gp63 as a drug target and its inhibitors identified using in silico approaches.


Assuntos
Leishmania , Leishmaniose Cutânea , Leishmaniose Visceral , Humanos , Metaloendopeptidases , Leishmaniose Cutânea/parasitologia , Glicoproteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...